免责声明: 本网站所有内容均明确标注文章来源,内容系转载于各媒体渠道,仅为传播资讯之目的。我们对内容的准确性、完整性、时效性不承担任何法律责任。对于内容可能存在的事实错误、信息偏差、版权纠纷以及因内容导致的任何直接或间接损失,本网站概不负责。如因使用、参考本站内容引发任何争议或损失,责任由使用者自行承担。
北京相关问答
- 2026-01-26 马来西亚雪兰莪州新村节展示华人新村文化
中新社吉隆坡1月25日电(记者陈悦)25日下午,为期两天的马来西亚雪兰莪州新村节在雪兰莪州巴生市班达马兰华人新村落幕。全雪兰莪州华人新村、渔村和传统村落通过花车、特产、文创产品等,展示各自的风采。马来西亚华人新村是在特殊...
- 2026-01-25 北京将构建对外开放新高地 扩大服务出口
中新网北京1月25日电(记者吕少威陈杭)北京今年将促进外贸提质增效,支持汽车、生物医药等优势领域产品出口,创新发展数字贸易、绿色贸易,扩大服务出口。25日,北京市第十六届人民代表大会第四次会议开幕。北京市市长殷勇作政府工...
- 2026-01-25 北京优化公共服务供给 将实施稳岗扩容提质行动
中新网北京1月25日电(记者徐婧陈杭)今年,北京将优化公共服务供给,解决好群众的身边事贴心事具体事。加强“一老一小”服务,健全长期护理保险制度,新建20个区域养老服务中心,新增5000张家庭养老床位。北京市第十六届人民代...
- 2026-01-25 北京强化老城整体保护 今年将推进正阳门城楼开放
中新网北京1月25日电(记者徐婧杜燕)北京今年将加强文化遗产系统性保护。强化老城整体保护,积极创建中轴线国家文物保护利用示范区,推进正阳门城楼开放、永定门城楼修缮。北京市第十六届人民代表大会第四次会议25日开幕。北京市市...
- 2026-01-25 北京两会:政府工作报告2025年数据速读
人民网北京1月25日电(记者潘俊强池梦蕊)2026年1月25日,在北京市第十六届人民代表大会第四次会议上,北京市市长殷勇向大会报告政府工作。2025年是“十四五”规划收官之年。过去一年,北京加强“四个中心”功能建设,提高...
- 2026-01-24 (走进中国乡村)闽浙边界山村孕育亿元茶产业
中新社福建宁德1月24日电题:闽浙边界山村孕育亿元茶产业作者林榕生郑德冬陆水琴寒冬腊月,福建省宁德市柘荣县城郊乡熊透村五千多亩茶园里,三三两两的人影穿梭在茶垄间,为春的萌发做足准备。全国农业技术能手、福建恒一生物科技有限...
- 推荐搜索问题
- 北京最新问答
-

百世荒唐 回答于01-27

月戟消逝 回答于01-27

黑夜的沈寂 回答于01-27

芦苇风 回答于01-27

尝尽温柔 回答于01-27

保持沉默 回答于01-27

丑八怪 回答于01-27

木月浅 回答于01-27

留不住的人 回答于01-27

众叛亲离 回答于01-26
- 北京最新热搜
- 天津最新热搜
- 上海最新热搜
- 重庆最新热搜
- 深圳最新热搜
- 河北最新热搜
- 石家庄最新热搜
- 山西最新热搜
- 太原最新热搜
- 辽宁最新热搜
- 沈阳最新热搜
- 吉林最新热搜
- 长春最新热搜
- 黑龙江最新热搜
- 哈尔滨最新热搜
- 江苏最新热搜
- 南京最新热搜
- 浙江最新热搜
- 杭州最新热搜
- 安徽最新热搜
- 合肥最新热搜
- 福建最新热搜
- 福州最新热搜
- 江西最新热搜
- 南昌最新热搜
- 山东最新热搜
- 济南最新热搜
- 河南最新热搜
- 郑州最新热搜
- 湖北最新热搜
- 武汉最新热搜
- 湖南最新热搜
- 长沙最新热搜
- 广东最新热搜
- 广州最新热搜
- 海南最新热搜
- 海口最新热搜
- 四川最新热搜
- 成都最新热搜
- 贵州最新热搜
- 贵阳最新热搜
- 云南最新热搜
- 昆明最新热搜
- 陕西最新热搜
- 西安最新热搜
- 甘肃最新热搜
- 兰州最新热搜
- 青海最新热搜
- 西宁最新热搜
- 内蒙古最新热搜
- 呼和浩特最新热搜
- 广西最新热搜
- 南宁最新热搜
- 西藏最新热搜
- 拉萨最新热搜
- 宁夏最新热搜
- 银川最新热搜
- 新疆最新热搜
- 乌鲁木齐最新热搜


中新网西安1月14日电(阿琳娜郭楠楠)长期以来,半导体面临一个根本矛盾:我们知道下一代材料的性能会更好,却往往不知道如何将它制造出来。“就像我们都知道怎么控制火候,但真正把握好却很难。”西安电子科技大学领军教授周弘这样比喻。
记者14日从西安电子科技大学获悉,该校郝跃院士张进成教授团队的最新研究在这一核心难题上实现了历史性跨越——通过将材料间的“岛状”连接转化为原子级平整的“薄膜”,使芯片的散热效率与综合性能获得了飞跃性提升。这不仅打破了近二十年的技术停滞,更在前沿科技领域展现出巨大潜力,相关成果已发表在国际顶级期刊《自然·通讯》与《科学·进展》。
据介绍,在半导体器件中,不同材料层间的界面质量直接决定了整体性能。特别是在以氮化镓为代表的第三代半导体和以氧化镓为代表的第四代半导体中,一个关键挑战在于如何将它们高效、可靠地集成在一起。传统方法使用氮化铝作为中间的“粘合层”,但“粘合层”在生长时,会自发形成无数不规则且凹凸不平的“岛屿”。“这就像在凹凸不平的堤坝上修建水渠。”周弘解释道,“‘岛状’结构表面崎岖,导致热量在界面传递时阻力极大,形成‘热堵点’。”热量散不出去,就会在芯片内部累积,最终导致性能下降甚至器件烧毁。这个问题自2014年相关成核技术获得诺贝尔奖以来,一直未能彻底解决,成为制约射频芯片功率提升的最大瓶颈。
团队的突破在于从根本上改变了氮化铝层的生长模式。他们创新性地开发出“离子注入诱导成核”技术,将原来随机、不均匀的生长过程,转变为精准、可控的均匀生长。“就像把随机播种变为按规划均匀播种,最终长出了整齐划一的庄稼。”周弘如此形容。这项工艺使氮化铝层从粗糙的“多晶岛状”结构,转变为原子排列高度规整的“单晶薄膜”。
这一转变带来了质的飞跃:平整的单晶薄膜大大减少了界面缺陷,热可快速通过缓冲/成核层导出。实验数据显示,新结构的界面热阻仅为传统“岛状”结构的三分之一。这项看似基础的材料工艺革新,恰恰解决了从第三代到第四代半导体都面临的共性散热难题,为后续的性能爆发奠定了最关键的基础。
基于这项创新的氮化铝薄膜技术,研究团队制备出的氮化镓微波功率器件,在X波段和Ka波段分别实现了42W/mm和20W/mm的输出功率密度。这一数据将国际同类器件的性能纪录提升了30%到40%,是近二十年来该领域最大的一次突破。
“这意味着,在芯片面积不变的情况下,装备探测距离可以显著增加;对于通信基站而言,则能实现更远的信号覆盖和更低的能耗。”周弘说道。
对于普通民众,这项技术的红利也将逐步显现。虽然当前民用手机等设备尚不需要如此高的功率密度,但基础技术的进步是普惠的。未来,手机在偏远地区的信号接收能力可能更强,续航时间也可能更长。更深远的影响在于,它为推动5G/6G通信、卫星互联网等未来产业的发展,储备了关键的核心器件能力。
这项研究成果的深远影响,远不止于几项破纪录的数据。其核心价值在于,它成功地将氮化铝从一种特定的“粘合剂”,转变为一个可适配、可扩展的“通用集成平台”,为解决各类半导体材料高质量集成的世界性难题,提供了可复制的中国范式。
“我们的工作为解决‘如何让两种不同材料完美结合’这一根本问题,提供了一个标准答案。”周弘强调。
研究团队的目光已经投向更远处。“如果未来能将中间层替换为金刚石,器件的功率处理能力有望再提升一个数量级,达到现在的十倍甚至更多。”周弘表示,这种对材料极限的持续探索,正是半导体技术不断向前发展的核心动力。(完)
文章来源:https://www.chinanews.com/gn/2026/01-14/10551968.shtml